
Bridging the Gap Between
Development and Regulatory
Teams
Milton Yarberry
Director of Medical Programs, ICS

2

About ICS and Boston UX
Creating Transformative Products That Advance Patient Care

3www.ics.com/medical

ICS’ design studio
specializes in intuitive

touchscreen and
multimodal interfaces for

high-impact embedded and
connected devices.

Established in 1987, ICS delivers innovative
medtech solutions with a full suite of
services to accelerate development, testing
and certification of successful next-gen
products.

ICS and Boston UX are headquartered in
Waltham, Mass. with offices in California,
Canada and Europe.

Delivering a Full Suite of Medtech Services

4

● Human Factors Engineering

● IEC 62366-UX/UI Design

● Custom Frontend and Backend Software Development

● Development with IEC 62304-Compliant Platform

● Low-code Tools that Convert UX Prototype to Product

● Medical Device Cybersecurity

● AWS and Azure Cloud Services and Analytics

● ISO 14971-Compliant Hazard Analysis

● Software Verification Testing

● Complimentary Software Technology Assessment

Development à Regulatory
My background

Development Regulatory

5

Software & Systems Engineering

Complex Systems

Machine Learning

Software Architecture

Engineering and Project Management

Agile/Scrum

Waterfall

PMP

Regulatory

Safety & Efficacy

Standards

Compliance

Agenda
1. Defining the problem – the Gap

2. Complicating Factors

3. Bridging – the Gap

4. Nuances

5. Summary

6

Defining the Problem

7

Defining the Problem
Native Characteristics Cloud

8

Development Regulatory

Defining the Problem
Native Workflow

9

Validation

Verification

Specifications

Requirements

User needs

Intended use product

clinician

Product Risk

patient

Cyber

Development Regulatory

hard
part
first

prioritize

Investigate

example test

debug

modify analysis

test

done

• Do a bit of everything
• Iterate towards a solution
• Discovery
• Result driven, dynamic process

• Start at the top and trace down
• Hierarchical
• Phases
• Defined, static process

failure or
success?

evolving
thinking

System SW UX Cyber

… … … … …

… … … … …

Defining the Problem
The GAP

10

Happy to comply -
but give me

unambiguous
direction

Tailored process
that ensures Safe

and Effective

I hate writing
documents

Documentation is
in the code.

It works so,.. I’m
done!

Letter of the law

The law is
ambiguous and
rigidly enforced

Development Regulatory

Ba
d-

C
op

G
oo

d-
C

op

The
Gap
The
Gap

Defining the Problem
Logistical Gaps

Common events that exacerbate gaps:
Requirements

● Waiting for detailed Product Requirement decisions to be made

● Conflicting input – stems from no single source of truth that’s widely used

● No timeline for answers – no commitment to conclusion stalls progress and isn’t visible

● Lack of certainty about what level to document requirements – what’s essential for your Intended Use

Discovery
● Lack of deep understanding of corner cases – error recovery is always a deep topic that is often misunderstood/underestimated

● Deferring discovery – pushing prototyping efforts into middle schedule

Single source of truth
● Not knowing what's approved vs. under discussion

i. Aligning MRD vs. everything else

ii. Document Control System

iii. Distributing approved documentation

11

Complicating Factors

12

Complicating Factors
Lagging process
Process-lag

● Often/usually/always? Engineering is active before the QMS is approved

● Starting development without a QMS in place creates ambiguity
● Creates a need to ‘catch-up’

● Process-debt à confusion

Example: when should design documentation begin?

2 rules of thumb:
1) When you’re developing ‘product’ (not prototyping)
2) After the product requirements are approved

But,
1) Is there a precise point when you stop prototyping?
2) Product requirements are often evolved

13

Complicating Factors
Ambiguous process

Process-autonomy

● FDA regulations contain no specifics.
à WHY?

● FDA wrote the regulations to promote
flexibility for manufacturers

● Manufacturer’s obligation to understand
their own product, environment, application
and risks

● Autonomy = process tailoring = ambiguity

14

Complicating Factors
Complexity and late discovery

Software Stacking ● Unrestrained Complexity / Staggering amount of
content

● Late discovery of technology issues can impact
non-adjacent layers – hugely disruptive

i.e. technology replacement

● Late discovery is inevitable, but the quantity and
impact can be minimized

● This effect increases in the future
Number of layers
Depth of complexity
= Geometric complication

15

Operating System

Machine Learning

SensorsDrivers

User Interface

Actuators

Database Cybersecurity

Remote servers

3rd party libraries

Cloud services

Downstream data consumers

Safety System

Backoffice analytics Data Warehousing

Mobile platforms Remote monitoring IoT

3rd party libraries3rd party libraries3rd party libraries

Service Interface

Complicating Factors
Managing change

Pre-V&V (Verification & Validation)

● Pre-V&V is less formal, but

● The change process is variable and very messy

● Modification, approval, tracing of Design Outputs

Post-V&V: Overlap of change considerations

16

Change Control

Risk
Management

Technical
Change

►►►Changes ripple through design collateral

The change process is non-trivial

Complicating Factors
Managing change – A Use Error Example

17

Complicating Factors
Cognitive Saturation – software engineer

Layered knowledge and constraints saturates an individual’s cognitive capacity.

18

Linux RTOS
C++ Qt

GitLab
Continuous Integration

OpenCV

CFR 820
ISO 13485 IEC 14971

IEC 62304 CLIA
Part 11

SOPs

Verification testing Validation testing
Summative testing
Usability and HF

Functional requirements Integration testing Component APIs

Chain of evidence

Safe & Effective

DHF DMR DHR Design reviews Software specs Signature auth

Unit testsArchitectural compliance Tracing into the design

Clinical Application

Bridging

19

Bridging the Gap
Process lag & Ambiguous Process

Don’t create a gap
● Define (document, approve, distribute) design expectations when developments starts

● Interim Development Plan to avoid a gap
● For example, start with a ‘prototyping process’
● If no prototyping requirements, then define the boundary to prototyping

● Size the plan to the risk of the development activity
● Grow the plan with new activities
● Make the process explicit, simple (work instructions)

Implement a QMS progressively
● Use a risk based approach to prioritize QMS procedures
● Start with: Quality Manual, Design Control, Document and Records, Risk Management
● Add as they become relevant

KISS - Keep it simple/stupid

Use tools early – don’t invent and migrate
● Starting in a spreadsheet or simple document and migrating later tends to be vastly inefficient

20

Bridging the Gap
Complexity and late discovery

Assume an environment of change
● Don’t treat change as the exception
● Build technology changes into your process

● i.e. change image library

Write plans to minimize impact of change
● Aggregate design reviews for a sub-component

Tight cross-functional development
● Changes to HW can impact SW and vice-versa
● Incompatibilities drive late discovery
● Design reviews should have exhaustive input from adjacent development groups

● Mechanical, Usability, Systems, Electrical, Software

21

Bridging the Gap
Managing change

The obvious: up-front diligence and discovery is better than late-stage testing (or
discovery in the field)

Manage Change by minimizing Change
● Analyze the risky or complex components

● Prototype testing (if you haven’t tested it, assume the packaging doesn’t match the contents)

● Detailed review (cursory buy-in is the best place for late stage disaster to hide)

Explicit, simple, processes reduce the effort for changes

22

Bridging the Gap
Cognitive saturation

Make fewest demands feasible
● Have regulatory drive development formalization – don’t rely too heavy on engineers

Simplest possible process
● Think in terms of bare minimum process, but tailor them to the product need

● Avoid concessions to ‘no value, but satisfies compliance’

Consider Work Instructions for the most complex or common tasks

23

Nuances

24

Nuances: Single source of truth
The challenge: working-on and accessing approved project documents

File shares
• No Part 11 compliance
• No workflow management

• Weak versioning
• Weak version control

• Weak audit support

• No tracing

Document Control Systems
• Database like – not folder centric

• Access to approved documents license-limited
• Weak work-in-progress management

• Encumbered interface
• Results in lagging updates

• Offline caching
• Not the centralized source of truth

Leads to
• Uncertainty
• Mistakes

• Reworks
• And poor traceability

Solutions
• Design a document process optimized for

• Broad and easy access to approved documents
• Easy review/approval mechanism
• Account for work-in-progress
• Audit trail

• Use customized QMS tools

25

Nuance: Development Prerequisites
When does development start? When to turn on Design Controls?

Why do we need Design Controls?
● Meet the needs of end user and patients
● Ensures Intended Use is achieved
● Prevent unintended behavior in the delivered

product
● Ensures risks are managed

Very little needed to start Design Controls:
● Development Plan (responsibilities, activities:

definition/design/V&V, design outputs, etc.)
● Product Requirements (design inputs)
● QMS Procedures / SOPs?

But, when should we start Design Controls?
● When product development has started

Are we still prototyping?
● Is any part of the prototype going to be used in the

final product?
Yes à developing
No à prototyping

Risks without Design Controls
● Developed the wrong functionality
● Leaving unintended features in the product
● No design review of prototypes

26

Nuance: Leveraging prototyping
Acceleration Opportunity

Prototyping can de-risk late-stage
development

Use rapid-prototyping UI tools to:
● Define the User Interface
● Circulate & Collaborate
● Explore corner cases
● Approve a versioned instance
● Export to a prototype on the target

processing and display hardware

High-fidelity prototyping tools can:
● Enable pixel perfect exports
● Maintain fidelity from wireframes to

backend functions

27

In a nutshell

28

In summary – Bridging Development and Regulatory

Different native tendencies

Incompatible workflows

Diverse set of personalities

Huge range of complicating factors

GAP: Functional, Cultural (and notorious)

29

In summary – Bridging Development and Regulatory

1) Don’t start with a Gap: when developers start, create a micro-process to

cement expectations (benefits: early process patterning, reduced ambiguity, no conversion waste, less design refactoring)

2) KISS – keep process obligations simple, obvious

3) Regulatory-led process steps (Support developers Use Work Instructions where needed)

4) Leverage prototypes (Use development tools that leverage prototypes into production code)

5) Turn on Design Controls only when developing production code

6) Carefully optimize the document management process (easy access/review/approval and WIP)

7) Use customized QMS tools early – avoid conversions

30

Questions?

31

